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Modularity over Q

De�nition

An elliptic curve E over Q is modular if there exists a modular

form f of weight 2 such that

L(E , s) = L(f , s).
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Proof of Fermat's last theorem

Theorem (Fermat's last theorem)

All solutions of xn + yn = zn in Z for n ≥ 3 satisfy xyz = 0.

1 Su�ces to consider n = 4 (Fermat) or n = p prime.

2 (Frey) To a solution (a, b, c) one can associate the

(semistable) elliptic curve y2 = x(x − ap)(x + bp).

3 (Wiles - modularity) The Frey curve corresponds to a modular

form f of level ∏
q|abc and q prime

q and weight 2.

4 (Ribet) This form is congruent mod p to one of level 2 and

weight 2.

5 There are no modular forms of level 2 and weight 2.
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Modularity over Q

Theorem (Wiles, Taylor & Wiles, 1995.)

All semistable elliptic curves over Q are modular.

Corollary (Wiles, 1995.)

Fermat's last theorem is true.

Theorem (Breuil, Conrad, Diamond & Taylor 2001.)

All elliptic curves over Q are modular.
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Modularity over totally real number �elds

Hilbert modular forms are generalizations of classical modular

forms. They are "de�ned" over totally real number �elds.

As with classical modular forms, one can de�ne the L-function
L(f , s) of a Hilbert modular form f .

De�nition

An elliptic curve E over a totally real number �eld K is modular if

there exists a Hilbert modular form f over K of parallel weight 2

such that

L(E , s) = L(f , s).
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A conjecture and known results

Conjecture

All elliptic curves over all totally real number �elds are modular.

Theorem (Jarvis and Manoharmayum 2008.)

Semistable elliptic curves over Q(
√
2) and Q(

√
17) are modular.

Theorem (Freitas, Le Hung, Siksek 2015.)

All elliptic curves over all real quadratic �elds are modular.
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Our result

Theorem (Derickx, N., Siksek 2018.)

All elliptic curves over all totally real cubic �elds are modular.
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Some de�nitions

Let K be a number �eld, GK := Gal(K/K ), E/K an elliptic curve

and p a prime.

E [p] :=
{
P ∈ E (K ) : [p]P = O

}
= ker[p].

GK acts on E [p] inducing a group homomorphism

ρE ,p : GK → Aut(E [p]) ' GL2(Fp)

called the mod p Galois representation attached to E .

Filip Najman Modularity over totally real cubic �elds



Some de�nitions

Let K be a number �eld, GK := Gal(K/K ), E/K an elliptic curve

and p a prime.

E [p] :=
{
P ∈ E (K ) : [p]P = O

}
= ker[p].

GK acts on E [p] inducing a group homomorphism

ρE ,p : GK → Aut(E [p]) ' GL2(Fp)

called the mod p Galois representation attached to E .

Filip Najman Modularity over totally real cubic �elds



Some de�nitions

Let K be a number �eld, GK := Gal(K/K ), E/K an elliptic curve

and p a prime.

E [p] :=
{
P ∈ E (K ) : [p]P = O

}
= ker[p].

GK acts on E [p] inducing a group homomorphism

ρE ,p : GK → Aut(E [p]) ' GL2(Fp)

called the mod p Galois representation attached to E .

Filip Najman Modularity over totally real cubic �elds



Images of Galois

Let GE (p) := ρE ,p(GK ) ≤ GL2(Fp). Then one of the following is

true:

(i) GE (p) ⊇ SL2(Fp).

(ii) The image GE (p) in PGL2(Fp) is A4,S4 or A5.

(iii) GE (p) is conjugate to a subgroup of the Borel subgroup B(p),
the subgroup of upper triangular matrices.

(iv) GE (p) is conjugate to a subgroup of the normalizer of the split

Cartan subgroup C+
s
(p).

(v) GE (p) is conjugate to a subgroup of the normalizer of the

non-split Cartan subgroup C+
ns
(p).

The K -points on the modular curves X0(p), Xs(p) and Xns(p)
correspond to elliptic curves over K for which GE (p) is in the cases

(iii), (iv) and (v), respectively.
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Modularity lifting theorems

Theorem (Wiles, Breuil, Diamond, Kisin,

Barnett�Lamb-Gee-Geraghty + Langlands-Tunnel)

Let K be a totally real number �eld and E an elliptic curve over K .

Suppose that

ρE ,3 is irreducible (⇐⇒ GE (3) * B(3)), and

GE (3) is not contained in the normaliser of a split Cartan

subgroup.

Then E is modular.

So if E/K is not modular then GE (3) is contained in B(3) or
C+
s
(3).
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Modularity lifting theorems

Theorem (Thorne 2016)

Let E be an elliptic curve over a totally real number �eld K and

suppose 5 is not a square in K and GE (5) * B(5). Then E is

modular.

So if E/K is not modular then GE (5) is contained in B(5).

Theorem (Kalyanswamy 2016)

Let K be a totally real number �eld and E an elliptic curve over K
and

K ∩Q(ζ7) = Q.

GE (7) * B(7)

GE (7) * C+
ns
(7).

Then E is modular.

So if K 6= Q(ζ7)
+, and E/K is not modular then GE (7) is

contained in B(7) or C+
ns
(7).
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Points on modular curves

It follows that: if E is not modular it gives rise to a K -point on

Xu(3)×X (1) X0(5)×X (1) Xw (7) for some u ∈ {0, s} and
w ∈ {0, ns}.

Let X (u3, b5,w7) := Xu(3)×X (1) X0(5)×X (1) Xw (7), with "b"

instead of "0", i.e.

X (b3, b5, ns7) = X0(3)×X (1) X0(5)×X (1) Xns(7).

If one �nds the set of all the points of degree d on X (b5,w7) for
some w ∈ {0, ns}, then this set will contain all the points of degree

d on X (u3, b5,w7), for any u.
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Modularity over quadratic �elds

Freitas, Le Hung, Siksek needed to �nding all quadratic points on 7

modular curves of genera 3, 3, 4, 73, 97, 113 and 153, as the

modularity lifting results known then were weaker.

Remarkably, they manage to show that all the quadratic points on

these curves correspond to modular elliptic curves.
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The modular curves we need to consider

We will prove

(1) All elliptic curves over Q(ζ7)
+ are modular.

(2) The modular curve X (b5, b7) has no totally real non-cuspidal

cubic points.

(3) The modular curve X (b5, ns7) has no totally real non-cuspidal

cubic points.
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Dealing with K = Q(ζ7)
+

The modular curves X (b3, b5) and X (s3, b5) are elliptic curves of
conductor 15.

It is easy to check that their rank over K is 0, �nd all the elliptic

curves corresponding to K -rational points on these modular curves.

It turns out that all such curves are twists of elliptic curves de�ned

over Q, which are known to be modular.
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The modular curve X0(35)

The modular curve X := X (b5, b7) = X0(35) is a hyperelliptic

curve of genus 3.

We �rst want to show that X has �nitely many cubic points.

Theorem (Abramovich and Harris)

A curve de�ned over a number �eld K has in�nitely many points of

degree d = 2 or 3 over K i� it has a degree d map to P1 or an

elliptic curve with poitive rank over K .
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Finitely many cubic points on X0(35)

Lemma

X has no degree 3 maps to P1.

Proof:

Theorem (Castelnuovo-Severi inequality)

Let k be a perfect �eld, and X ,Y ,Z curves over k . Let

πY : X → Y and πZ : X → Z be morphisms of degree m and n
respectively, and assume that there is no morphism X → X ′ of
degree > 1 through which both πY and πZ factor. Then

g(X ) ≤ m · g(Y ) + n · g(Z ) + (m − 1)(n − 1).

Taking Y = Z = P1, m = 2, n = 3, we see that if X has a maps of

both degree 2 and 3 to P1, then g(X ) ≤ 2.
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Finitely many cubic points on X0(35)

Lemma

X has no degree 3 maps to an elliptic curve with positive rank over

Q.

Proof: By modularity over Q, if such an elliptic curve existed, it

would have to have conductor dividing 35, and we check in LMFDB

that the curves with conductor dividing 35 do not have positive

rank.
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The modular curve X0(35)

X has 4 cusps, all de�ned over Q, and has the following model:

X : y2 = (x2 + x − 1)(x6 − 5x5 − 9x3 − 5x − 1).

Denote J := J(X ). We have J(Q) ' Z/2Z× Z/24Z.
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The modular curve X0(35)

Let K be a totally real cubic �eld, and for a point P ∈ X (K ),
P /∈ X (Q), let P1,P2,P3 be the conjugates of P given by the

embeddings of K into Q.

Then D = P1 + P2 + P3 is an irreducible Q-divisor of degree 3.

Let D1, . . . ,D48 be Q-divisors of degree 0 representing the 48

classes in J(Q), and let Ti = Di + 3∞+.

Hence D ∼ Ti , for some i .

Let L(Ti ) be the Riemann�Roch space corresponding to Ti , `(Ti )
it's dimension, and |Ti | be the corresponding complete linear

system.

Cli�ord's theorem on special divisors implies `(Ti ) = 1 or 2.
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The modular curve X0(35)

Of the 48 possible Ti , 4 have `(Ti ) = 2.

If `(Ti ) = 2, then |Ti | contains a base point, so cannot contain an

irreducible divisor.

Let now `(Ti ) = 1. Then L(Ti ) = Qfi for some fi in Q(X ), and
D ∼ Ti + div fi .

We can explicitly compute these R-R spaces using an algorithm of

Hess.

We get that 28 of the remaining 44 Ti are irreducible, and all of the

irreducible ones split over cubic �elds with complex embeddings.
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The modular curve X (b5, ns7)

Let from now on X := X (b5, ns7), J := J(X ).

X is non-hyperelliptic of genus 6.

We prove that the gonality (the smallest degree of a map to P1) of

X is 4 and that there will be only �nitely many cubic points.

X has the following model:

5u6 − 50u5v + 206u4v2 − 408u3v3 + 321u2v4 + 10uv5 − 100v6 + 9u4w2−

60u3vw2 + 80u2v2w2 + 48uv3w2 + 15v4w2 + 3u2w4 − 10uvw4 + 6v2w4 − w6 = 0.

Le Hung (2014): J ∼ A1 × A2 × A3, where Ai are absolutely simple

modular abelian surfaces de�ned over Q.

We compute that the analytic ranks of A1,A2,A3 over Q are

2, 0, 0, respectively, so by results of Kolyvagin and Logachev, these

are their ranks over Q.
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The modular curve X (b5, ns7)

The cusps of X form two Galois orbits of size 3. Denote by c0, c∞
divisors obtained by summing the cusps in each orbit.

Proposition

AutQ X = 〈w5〉 ∼= Z/2Z

The involution w5 interchanges c0 and c∞.
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The modular curve X (b5, ns7)

Proposition

A := im(w5 − 1) ⊆ J is a subabelian variety of dimension 4 with

A(Q) = 〈[c0 − c∞]〉 ' Z/7Z.

Proof: We show that A ∼ A2 × A3, so the rank of A(Q) is zero.

We compute that the order of [c0 − c∞] is 7 and

(w5 − 1)([3c0 − 3c∞]) = 6[c∞ − c0] = [c0 − c∞].

Therefore [c0 − c∞] ∈ A(Q).

Also,

J(F3) ∼= Z/7Z× Z/(7 · 23)Z,

and

J(F17) ∼= Z/2Z× Z/(22 · 73 · 31 · 271)Z.
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Formal immersions

De�nition

A morphism f : X → Y of Noetherian schemes is a formal

immersion at x ∈ X if

f̂ : ÔY ,f (x) → ÔX ,x

is surjective.
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Formal immersions

Let K be a number �eld, ℘ a prime ideal of K . We de�ne

Res℘(x) := {x ′ ∈ X (K℘) : x ≡ x ′ (mod ℘)}.

Proposition

Let K be a number �eld, ℘ a prime ideal not dividing 2, f : X → Y
a morphism of schemes, where Y is an abelian variety of rank 0

over K , and X ,Y have good reduction at ℘, and let f be a formal

immersion at x ∈ X (OK/℘). Then

X (K ) ∩ Res℘(x) = {x}.
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Completing the proof

Let x ∈ X (3)(Q).

Since A(Q) = 〈[c0 − c∞]〉 ' Z/7Z, it follows that

(1− w5)[x − c∞] = `[c0 − c∞], for some ` ∈ Z/7Z.

We have w5(c∞) = c0, so we can rewrite the equation above as

(x − w5(x)) ∼ k · (c0 − c∞),

for some k ∈ {−3, . . . , 3}.

Let x̃ , c̃∞, c̃0 ∈ X (3)(F3) be the reductions of x , c∞, c0 mod 3. So,

(x̃ − w5(x̃)) ∼ k · (c̃0 − c̃∞).

We tested the above relation and get that it holds for only x̃ = c̃0
and k = 1 and x̃ = c̃∞ and k = −1.
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We tested the above relation and get that it holds for only x̃ = c̃0
and k = 1 and x̃ = c̃∞ and k = −1.
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Completing the proof
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Completing the proof

Suppose WLOG that x̃ = c̃∞. We want to show that x = c∞.

To do that we prove that f : X (3) → A de�ned as the composition

of the Abel-Jacobi map ι : X (3) → J and (1− w5) : J → A is a

formal immersion at c̃∞ using a criterion of Derickx, Kamienny,

Stein and Stoll.

This completes the proof.
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The end

Thank you for your attention!
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